Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
2.
Mov Disord ; 38(12): 2185-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823518

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson's disease (PD). However, clinical programming remains challenging with segmented electrodes. OBJECTIVE: Using novel sensing-enabled neurostimulators, we investigated local field potentials (LFPs) and their modulation by DBS to assess whether electrophysiological biomarkers may facilitate clinical programming in chronically implanted patients. METHODS: Sixteen patients (31 hemispheres) with PD implanted with segmented electrodes in the subthalamic nucleus and a sensing-enabled neurostimulator were included in this study. Recordings were conducted 3 months after DBS surgery following overnight withdrawal of dopaminergic medication. LFPs were acquired while stimulation was turned OFF and during a monopolar review of both directional and ring contacts. Directional beta power and stimulation-induced beta power suppression were computed. Motor performance, as assessed by a pronation-supination task, clinical programming and electrode placement were correlated to directional beta power and stimulation-induced beta power suppression. RESULTS: Better motor performance was associated with stronger beta power suppression at higher stimulation amplitudes. Across directional contacts, differences in directional beta power and the extent of stimulation-induced beta power suppression predicted motor performance. However, within individual hemispheres, beta power suppression was superior to directional beta power in selecting the contact with the best motor performance. Contacts clinically activated for chronic stimulation were associated with stronger beta power suppression than non-activated contacts. CONCLUSIONS: Our results suggest that stimulation-induced ß power suppression is superior to directional ß power in selecting the clinically most effective contact. In sum, electrophysiological biomarkers may guide programming of directional DBS systems in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Ritmo beta/fisiologia , Núcleo Subtalâmico/fisiologia , Biomarcadores
3.
Sensors (Basel) ; 23(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299968

RESUMO

Bradykinesia is a cardinal hallmark of Parkinson's disease (PD). Improvement in bradykinesia is an important signature of effective treatment. Finger tapping is commonly used to index bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, recently developed automated bradykinesia scoring tools are proprietary and are not suitable for capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson's Disease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson's disease (PwP) during routine treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry. Herein, we developed and validated ReTap, an open-source tool for the automated prediction of finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample (n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over 70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source and detailed analyses of bradykinesia.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Hipocinesia/diagnóstico , Dedos , Fenômenos Biomecânicos
4.
Mov Disord ; 38(4): 692-697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36718788

RESUMO

BACKGROUND: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown. OBJECTIVE: The aim was to investigate Christmas-related influences on beta activity in PD. METHODS: Differences in Christmas Day to nonfestive daily averages in chronic biomarker recordings in 4 PD patients with a sensing-enabled STN DBS implant were retrospectively analyzed. Sweet-spot and whole-brain network connectomic analyses were performed. RESULTS: Beta activity was significantly reduced on Christmas Eve in all patients (4.00-9.00 p.m.: -12.30 ± 10.78%, P = 0.015). A sweet spot in the dorsolateral STN connected recording sites to motor, premotor, and supplementary motor cortices. CONCLUSIONS: We demonstrate that festive events can reduce beta biomarker activity. We conclude that circadian and holiday-related changes should be considered when tailoring adaptive DBS algorithms to patient demands. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estudos Retrospectivos , Núcleo Subtalâmico/fisiologia
5.
Lancet Digit Health ; 5(2): e59-e70, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528541

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly effective in controlling motor symptoms in patients with Parkinson's disease. However, correct selection of stimulation parameters is pivotal to treatment success and currently follows a time-consuming and demanding trial-and-error process. We aimed to assess treatment effects of stimulation parameters suggested by a recently published algorithm (StimFit) based on neuroimaging data. METHODS: This double-blind, randomised, crossover, non-inferiority trial was carried out at Charité - Universitätsmedizin, Berlin, Germany, and enrolled patients with Parkinson's disease treated with directional octopolar electrodes targeted at the STN. All patients had undergone DBS programming according to our centre's standard of care (SoC) treatment before study recruitment. Based on perioperative imaging data, DBS electrodes were reconstructed and StimFit was applied to suggest optimal stimulation settings. Patients underwent motor assessments using the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III) during OFF-medication and in OFF-stimulation and ON-stimulation states under both conditions, StimFit and SoC parameter settings. Patients were randomly assigned (1:1) to receive either StimFit-programmed DBS first and SoC-programmed DBS second, or SoC-programmed DBS first and StimFit-programmed DBS second. The allocation schedule was generated using a computerised random number generator. Both the rater and patients were masked to the sequence of SoC and StimFit stimulation conditions. All patients who participated in the study were included in the analysis. The primary endpoint of this study was the absolute mean difference between MDS-UPDRS-III scores under StimFit and SoC stimulation, with a non-inferiority margin of 5 points. The study was registered at the German Register for Clinical Trials (DRKS00023115), and is complete. FINDINGS: Between July 10, 2020, and Oct 28, 2021, 35 patients were enrolled in the study; 18 received StimFit followed by SoC stimulation, and 17 received SoC followed by StimFit stimulation. Mean MDS-UPDRS-III scores improved from 47·3 (SD 17·1) at OFF-stimulation baseline to 24·7 (SD 12·4) and 26·3 (SD 12·4) under SoC and StimFit stimulation, respectively. Mean difference between motor scores was -1·6 (SD 7·1; 95% CI -4·0 to 0·9; superiority test psuperiority=0·20; n=35), establishing non-inferiority of StimFit stimulation at a margin of -5 points (non-inferiority test pnon-inferiority=0·0038). In six patients (17%), initial programming of StimFit settings resulted in acute side-effects and amplitudes were reduced until side-effects disappeared. INTERPRETATION: Automated data-driven algorithms can predict stimulation parameters that lead to motor symptom control comparable to SoC treatment. This approach could significantly decrease the time necessary to obtain optimal treatment parameters. FUNDING: Deutsche Forschungsgemeinschaft through NeuroCure Clinical Research Center and TRR 295.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/tratamento farmacológico , Estimulação Encefálica Profunda/métodos , Estudos Cross-Over , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/cirurgia , Eletrodos
6.
Neuroimage Clin ; 36: 103185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36099807

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an established therapy for patients with Parkinson's disease. In silico computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external modulation of neural activity. OBJECTIVE: The aim of this project was to investigate correlations between patient-specific pathway activation profiles and clinical motor improvement. METHODS: We used the concept of pathway activation modeling, which incorporates advanced volume conductor models and anatomically authentic fiber trajectories to estimate DBS-induced action potential initiation in anatomically plausible pathways that traverse in close proximity to targeted nuclei. We applied the method on two retrospective datasets of DBS patients, whose clinical improvement had been evaluated according to the motor part of the Unified Parkinson's Disease Rating Scale. Based on differences in outcome and activation levels for intrapatient DBS protocols in a training cohort, we derived a pathway activation profile that theoretically induces a complete alleviation of symptoms described by UPDRS-III. The profile was further enhanced by analyzing the importance of matching activation levels for individual pathways. RESULTS: The obtained profile emphasized the importance of activation in pathways descending from the motor-relevant cortical regions as well as the pallidothalamic pathways. The degree of similarity of patient-specific profiles to the optimal profile significantly correlated with clinical motor improvement in a test cohort. CONCLUSION: Pathway activation modeling has a translational utility in the context of motor symptom alleviation in Parkinson's patients treated with DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Resultado do Tratamento , Doença de Parkinson/terapia , Doença de Parkinson/etiologia
7.
Elife ; 112022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35594135

RESUMO

Background: Deep brain stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MERs) or local field potential recordings can be used to extend neuroanatomical information (defined by MRI) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced. Methods: Here, we present a tool that integrates resources from stereotactic planning, neuroimaging, MER, and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (N = 52) offline and present single-use cases of the real-time platform. Results: We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool. Conclusions: This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages. Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luft- und Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), and Foundation for OCD Research (FFOR).


Deep brain stimulation is an established therapy for patients with Parkinson's disease and an emerging option for other neurological conditions. Electrodes are implanted deep in the brain to stimulate precise brain regions and control abnormal brain activity in those areas. The most common target for Parkinson's disease, for instance, is a structure called the subthalamic nucleus, which sits at the base of the brain, just above the brain stem. To ensure electrodes are placed correctly, surgeons use various sources of information to characterize the patient's brain anatomy and decide on an implant site. These data include brain scans taken before surgery and recordings of brain activity taken during surgery to confirm the intended implant site. Sometimes, the brain activity signals from this last confirmation step may slightly alter surgical plans. It represents one of many challenges for clinical teams: to analyse, assimilate, and communicate data as it is collected during the procedure. Oxenford et al. developed a software pipeline to aggregate the data surgeons use to implant electrodes. The open-source platform, dubbed Lead-OR, visualises imaging data and brain activity recordings (termed electrophysiology data) in real time. The current set-up integrates with commercial tools and existing software for surgical planning. Oxenford et al. tested Lead-OR on data gathered retrospectively from 32 patients with Parkinson's who had electrodes implanted in their subthalamic nucleus. The platform showed good agreement between imaging and electrophysiology data, although there were some unavoidable discrepancies, arising from limitations in the imaging pipeline and from the surgical procedure. Lead-OR was also able to correct for brain shift, which is where the brain moves ever so slightly in the skull. With further validation, this proof-of-concept software could serve as a useful decision-making tool for surgical teams implanting electrodes for deep brain stimulation. In time, if implemented, its use could improve the accuracy of electrode placement, translating into better surgical outcomes for patients. It also has the potential to integrate forthcoming ultra-high-resolution data from current brain mapping projects, and other commercial surgical planning tools.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Humanos , Imageamento por Ressonância Magnética/métodos , Microeletrodos , Neuroimagem/métodos , Estudos Retrospectivos
8.
NPJ Parkinsons Dis ; 8(1): 44, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440571

RESUMO

Adaptive deep brain stimulation (aDBS) is a promising concept for feedback-based neurostimulation, with the potential of clinical implementation with the sensing-enabled Percept neurostimulator. We aim to characterize chronic electrophysiological activity during stimulation and to validate beta-band activity as a biomarker for bradykinesia. Subthalamic activity was recorded during stepwise stimulation amplitude increase OFF medication in 10 Parkinson's patients during rest and finger tapping. Offline analysis of wavelet-transformed beta-band activity and assessment of inter-variable relationships in linear mixed effects models were implemented. There was a stepwise suppression of low-beta activity with increasing stimulation intensity (p = 0.002). Low-beta power was negatively correlated with movement speed and predictive for velocity improvements (p < 0.001), stimulation amplitude for beta suppression (p < 0.001). Here, we characterize beta-band modulation as a chronic biomarker for motor performance. Our investigations support the use of electrophysiology in therapy optimization, providing evidence for the use of biomarker analysis for clinical aDBS.

9.
Mov Disord ; 37(3): 574-584, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837245

RESUMO

BACKGROUND: Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel. OBJECTIVE: We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics. METHODS: Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects. Model performance was then evaluated within the training cohort using cross-validation and on an independent cohort of 19 patients. We inverted the model by applying a brute-force approach to determine the optimal stimulation sites in the target region. Finally, an optimization algorithm was established to identify optimal stimulation parameters. Suggested stimulation parameters were compared to the ones applied in clinical practice. RESULTS: Predicted motor outcome correlated with observed outcome (R = 0.57, P < 10-10 ) across patients within the training cohort. In the test cohort, the model explained 28% of the variance in motor outcome differences between settings. The stimulation site for maximum motor improvement was located at the dorsolateral border of the STN. When compared to two empirical settings, model-based suggestions more closely matched the setting with superior motor improvement. CONCLUSION: We developed and validated a data-driven model that can suggest stimulation parameters leading to optimal motor improvement while minimizing the risk of stimulation-induced side effects. This approach might provide guidance for DBS programming in the future. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Algoritmos , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento
10.
J Parkinsons Dis ; 11(4): 1887-1899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34151855

RESUMO

BACKGROUND: Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. OBJECTIVE: We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. METHODS: For 23 Parkinson's disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. RESULTS: Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. CONCLUSION: Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Algoritmos , Estimulação Encefálica Profunda/métodos , Método Duplo-Cego , Retroalimentação , Humanos , Doença de Parkinson/terapia , Estudos Prospectivos , Resultado do Tratamento
11.
Ann Neurol ; 86(4): 527-538, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376171

RESUMO

OBJECTIVE: To investigate whether functional sweet spots of deep brain stimulation (DBS) in the subthalamic nucleus (STN) can predict motor improvement in Parkinson disease (PD) patients. METHODS: Stimulation effects of 449 DBS settings in 21 PD patients were clinically and quantitatively assessed through standardized monopolar reviews and mapped into standard space. A sweet spot for best motor outcome was determined using voxelwise and nonparametric permutation statistics. Two independent cohorts were used to investigate whether stimulation overlap with the sweet spot could predict acute motor outcome (10 patients, 163 settings) and long-term overall Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) improvement (63 patients). RESULTS: Significant clusters for suppression of rigidity and akinesia, as well as for overall motor improvement, resided around the dorsolateral border of the STN. Overlap of the volume of tissue activated with the sweet spot for overall motor improvement explained R2 = 37% of the variance in acute motor improvement, more than triple what was explained by overlap with the STN (R2 = 9%) and its sensorimotor subpart (R2 = 10%). In the second independent cohort, sweet spot overlap explained R2 = 20% of the variance in long-term UPDRS-III improvement, which was equivalent to the variance explained by overlap with the STN (R2 = 21%) and sensorimotor STN (R2 = 19%). INTERPRETATION: This study is the first to predict clinical improvement of parkinsonian motor symptoms across cohorts based on local DBS effects only. The new approach revealed a distinct sweet spot for STN DBS in PD. Stimulation overlap with the sweet spot can predict short- and long-term motor outcome and may be used to guide DBS programming. ANN NEUROL 2019;86:527-538.


Assuntos
Estimulação Encefálica Profunda , Rigidez Muscular/terapia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Bases de Dados Factuais , Humanos , Rigidez Muscular/complicações , Doença de Parkinson/complicações , Transtornos Psicomotores/complicações , Transtornos Psicomotores/terapia , Resultado do Tratamento
12.
Parkinsonism Relat Disord ; 62: 122-127, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30638820

RESUMO

INTRODUCTION: We sought to assess the effect of subthalamic deep brain stimulation (STN DBS) on Parkinson's disease (PD)-associated postural abnormalities. METHODS: A computerized analysis of posture was used to quantify the thoracolumbar, thoracic, and cervical-occipital ventral angles, as well as the thoracolumbar and cervical-occipital lateral angles from the video-repository of three specialized movement disorder centers (n = 158 patients). Data was extracted from frames from video-recordings in the pre-surgical medication-ON (dopaminergic therapy) and post-surgical stimulation-ON/medication-ON states (STN DBS plus dopaminergic therapy). The sum of the five postural angles (global postural angle) was used to compare pre-vs. post-surgical trunk posture alterations. A multivariate analysis was used to examine the association between changes in the postural angles and demographic or clinical variables. RESULTS: There was a 6.7% amelioration in the global postural angle between the pre- and post-surgical assessments (p = 0.031). Motor response to and pre-surgical dosage of levodopa, male gender, and shorter PD duration were identified as predictors for posture improvement after STN DBS. Cases meeting criteria for lower (n = 2) or upper (n = 1) camptocormia respectively improved by 48.1% in the ventral thoracolumbar angle (from 36.4 ±â€¯0.0° to 18.9 ±â€¯4.2°) and 13.8% in the ventral thoracic angle (from 49.1° to 42.3°). Cases meeting criteria for Pisa syndrome (n = 2) improved by 67.5% in the lateral thoracolumbar angle (from 16.9 ±â€¯2.0° to 5.5 ±â€¯4.7°). CONCLUSIONS: STN DBS has a relatively small but significant effect on PD-associated postural abnormalities, potentially enhancing the effect of dopaminergic medications alone.


Assuntos
Estimulação Encefálica Profunda , Levodopa/uso terapêutico , Atrofia Muscular Espinal/tratamento farmacológico , Doença de Parkinson/terapia , Curvaturas da Coluna Vertebral/tratamento farmacológico , Adulto , Idoso , Estimulação Encefálica Profunda/métodos , Dopamina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/diagnóstico , Doença de Parkinson/diagnóstico , Postura/fisiologia , Curvaturas da Coluna Vertebral/diagnóstico , Núcleo Subtalâmico/fisiopatologia , Núcleo Subtalâmico/cirurgia
13.
Mov Disord ; 32(10): 1380-1388, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28843009

RESUMO

OBJECTIVE: The objective of this study was to investigate whether directional deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson's disease (PD) offers increased therapeutic windows, side-effect thresholds, and clinical benefit. METHODS: In 10 patients, 20 monopolar reviews were conducted in a prospective, randomized, double-blind design to identify the best stimulation directions and compare them to conventional circular DBS regarding side-effect thresholds, motor improvement, and therapeutic window. In addition, circular and best-directional DBS were directly compared in a short-term crossover. Motor outcome was also assessed after an open-label follow-up of 3 to 6 months. RESULTS: Stimulation in the individual best direction resulted in significantly larger therapeutic windows, higher side-effect thresholds, and more improvement in hand rotation than circular DBS. Rigidity and finger tapping did not respond differentially to the stimulation conditions. There was no difference in motor efficacy or stimulation amplitudes between directional and circular DBS in the short-term crossover. Follow-up evaluations 3 to 6 months after implantation revealed improvements in motor outcome and medication reduction comparable to other DBS studies with a majority of patients remaining with a directional setting. CONCLUSION: Directional DBS can increase side-effect thresholds while achieving clinical benefit comparable to conventional DBS. Whether directional DBS improves long-term clinical outcome needs to be investigated in the future. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Rigidez Muscular/etiologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...